

Вариации скорости дрейфа ионизации над югом Восточной Сибири по архивным данным станций вертикального зондирования

Д.С. Хабитуев, Черниговская М.А.

# Введение

Работа посвящена восстановлению и анализу ретроспективных данных полученных в ИСЗФ (СибИЗМИР) по диагностике динамического режима ионосферы на станциях радиозондирования ионосферы в п. Зуй и п.Бадары

Радиозондирование ионосферы вблизи Иркутска на ст. Зуй проводилось с 1957 по 1982гг, а на ст. Бадары проводилось с 1974 по 1996г.

Метода разнесенного приема с малой базой (метод D1) являлся на момент применения одним из самых распространенных и информативных методов диагностики движений в ионосфере (широкая мировая сеть).

Актуальность данного исследования состоит в том, что накопленные данные охватывают почти 30 летний временной интервал (климатический период) с 1957 по ~1990е годы, однако систематический анализ и обобщение результатов этих исследований остается на низком уровне (особенно для ст. Зуй). Ввиду того, что регистрация данных в период исследований проводилась вручную (данные зондирования заносились в специальные журналы наблюдений и публиковались в сборниках) и по наст время хранятся в библиотеке института в печатном виде.

«Современные проблемы дистанционного зондирования Земли из космоса» 2024

п.Зуй — место проведения первых исследований ионосферы в Сибири (1948г — образование Иркутской ионосферной станции, первая ионограмма)

Начало проведений измерений методом D1

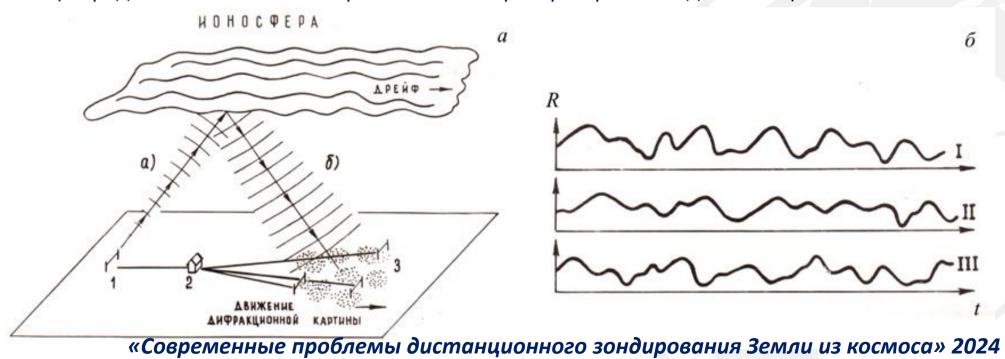
Указ об создании СибИЗМИРа. (1960г), начало выхода периодического издания «Исследования по геомагнетизму, аэрономии и физике Солнца» (сейчас журнал СЗФ)

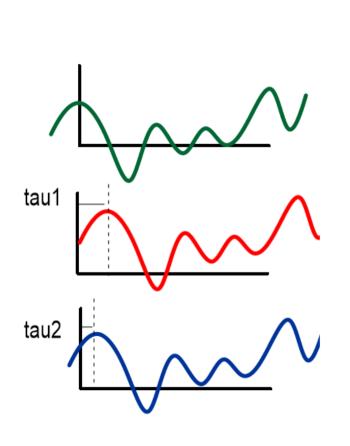
## Лаборатория динамики ионосферы СибИЗМИР

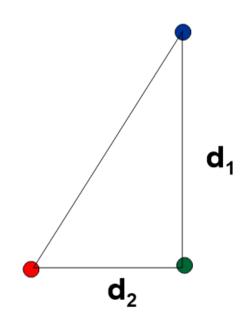







«Современные проблемы дистанционного зондирования Земли из космоса» 2024


### Метод D1


1 передающая антенна и 3 разнесенных приемных антенны на расстоянии нескольких сотен метров.

Позволяет получать дифракционную картину амплитуды R отраженного сигнала.

По взаимному смещению (федингу) принятого сигнала в 3 точках определяется скорость и направление движения (в предположении только горизонтального распространения движения)







$$\frac{1}{V'^2} = \frac{1}{W'^2} + \frac{1}{U'^2}$$

$$ctg\Phi = \frac{W'}{U'}$$

V- скорость дрейфа дифракционной картины  $\Phi$  – азимут (по часовой стрелке от направления на Север)

$$W' = \frac{d}{\tau_1} \qquad U' = \frac{d}{\tau_2}$$



### Параметры установки (ст. Зуй):

Рабочая частота 2.2-2.25Мгц

Мощность 20КВт (в импульсе)

Длительность импульса 100мкс

Частота 50Гц

Полоса пропускания приемника 18КГц

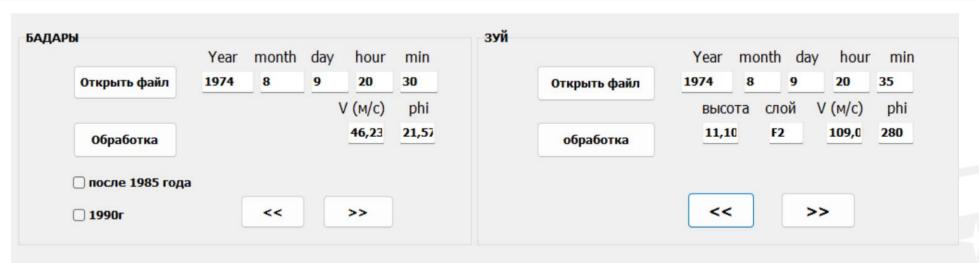
Передающая антенна в виде вертикального расщепленного ромба с Максимальной высотой подвеса 40м

Приемные антенны несимметричные Г-образные, с высотой подвеса 10м. Расположены параллельно друг другу в вершинах прямоугольного Треугольника, катеты которого имеют длину 120м и ориентированы в Широтном и долготном направлениях.

Отличие от ионозонда – передача на одной частоте (либо нескольких фиксированных)

| Дата<br>Date | Время<br>Time<br>GMT | высота (км)<br>Region<br>Height (кm) | M/cer.<br>m/s | град.<br>deg. | si/ces. |
|--------------|----------------------|--------------------------------------|---------------|---------------|---------|
|              |                      | Апрель -                             | – 1958 год    |               |         |
| 11           | 09.03                | 80 E                                 | 54            | 43.5          | +43     |
| 12           | 00.02                | 90 E                                 | 47            | 134           | +33     |
| 15           | 06.38                | 80 E                                 | 77            | 157           | +30     |
| 16           | 17.02                | 270 F                                | 60            | 322           | -37     |
| 18           | 00.04                | 100 E                                | 30            | 108           | +28     |
|              | 09.04                | 90 E                                 | 97.5          | 45            | +70     |
|              | 10.03                | 90 E                                 | 46            | 130           | +34     |
|              | 18.10                | 320 F                                | U20           | 27            | +8      |
|              | 22.05                | 350 F                                | 100           | 202           | -36     |
| 19           | 01.00                | 100 E                                | 52            | 138           | +36     |
|              | 02.00                | 90 E                                 | 33            | 148           | +18     |
|              | 03.03                | 90 E                                 | U102          | 72            | +95     |
|              | 04.02                | 90 E                                 | 47            | 124           | +40     |
|              | 06.01                | 90 E                                 | 63.5          | 150           | +31     |
|              | 09.01                | 90 E                                 | U88           | 316           | -61     |
| 20           | 02.02                | 80 E                                 | 133.5         | 144           | +82     |
|              | 05.01                | 80 E                                 | 73            | 130           | +5      |
|              | 07.02                | 80 E                                 | 74            | 125           | +6      |
|              | 22.00                | 90 E                                 | 182.5         | 338           | 3 -     |

Пример записи в журнале наблюдений.


Дата Время Высота Слой V Ф Vx Date GMT Height Region m/s deg. m/s

В журнал заносились только акты зондирования, для которых удавалось субъективно установить «подобие» дифракционной картины для 3х точек приема (30-40% от всего массива данных). Расчет ВКФ в то время не проводился.

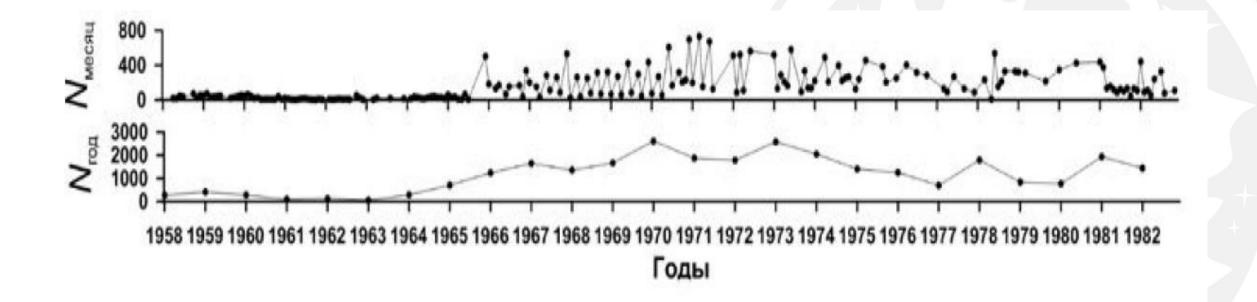
| year | month | day | time  | dayofyear | partofyear    | height | V_x(zona | V_y(meri | /      | Azimuth |
|------|-------|-----|-------|-----------|---------------|--------|----------|----------|--------|---------|
| 1962 | 2     | 8   | 5,07  | 38,0006   | 1962,10468798 | 110    | -65      | -51      | 82,62  | 231,88  |
| 1962 | 2     | 8   | 13,02 | 38,0015   | 1962,10559551 | 240    | 20       | -70      | 72,8   | 164,05  |
| 1962 | 2     | 10  | 6,03  | 40,0007   | 1962,11027778 | 105    | -42      | 37       | 55,97  | 311,38  |
| 1962 | 2     | 10  | 10,03 | 40,0011   | 1962,1107344  | 200    | 51       | -112     | 123,07 | 155,52  |
| 1962 | 2     | 26  | 3,05  | 56,0003   | 1962,15377283 | 110    | -89      | -55      | 104,62 | 238,28  |
| 1962 | 2     | 26  | 5,05  | 56,0006   | 1962,15400114 | 105    | -56      | 27       | 62,17  | 295,74  |
| 1962 | 3     | 20  | 2,23  | 78,0003   | 1962,21395358 | 115    | -54      | -89      | 104,1  | 211,25  |
| 1962 | 3     | 20  | 7,05  | 78,0008   | 1962,21450342 | 105    | 20       | 88       | 90,24  | 12,8    |
| 1962 | 3     | 20  | 8,05  | 78,0009   | 1962,21461758 | 110    | -89      | 31       | 94,24  | 289,2   |
| 1962 | 3     | 21  | 4,05  | 79,0005   | 1962,21690068 | 105    | 48       | -37      | 60,61  | 127,63  |
| 1962 | 4     | 17  | 8,05  | 106,0009  | 1962,29132991 | 110    | 89       | -54      | 104,1  | 121,25  |
| 1962 | 4     | 18  | 0,08  | 107       | 1962,2931602  | 110    | 66       | 0        | 66     | 90      |
| 1962 | 4     | 18  | 9,07  | 107,001   | 1962,29418569 | 110    | 30       | 51       | 59,17  | 30,47   |
| 1962 | 4     | 18  | 10,03 | 107,0011  | 1962,29429604 | 110    | 72       | 97       | 120,8  | 36,59   |
| 1962 | 4     | 18  | 16,13 | 107,0018  | 1962,29499239 | 270    | 64       | 37       | 73,93  | 59,97   |
| 1962 | 4     | 19  | 5,12  | 108,0006  | 1962,29647451 | 110    | 89       | -55      | 104,62 | 121,72  |
| 1962 | 4     | 19  | 8     | 108,0009  | 1962,29680365 | 115    | -89      | 55       | 104,62 | 301,72  |
| 1962 | 5     | 15  | 0,07  | 134       | 1962,3671309  | 110    | -36      | 65       | 74,3   | 331,02  |
| 1962 | 5     | 15  | 2,08  | 134,0002  | 1962,36736111 | 110    | 35       | 13       | 37,34  | 69,62   |
| 1962 | 5     | 15  | 6,08  | 134,0007  | 1962,36781773 | 105    | 33       | 40       | 51,86  | 39,52   |
| 1962 | 5     | 15  | 7,12  | 134,0008  | 1962,36793569 | 105    | 39       | 39       | 55,15  | 45      |
| 1962 | 5     | 15  | 8,08  | 134,0009  | 1962,36804604 | 110    | 38       | 19       | 42,49  | 63,43   |
| 1962 | 5     | 16  | 2,1   | 135,0002  | 1962,37010274 | 115    | 75       | 0        | 75     | 90      |
| 1962 | 5     | 16  | 3,08  | 135,0004  | 1962,37021499 | 110    | 74       | 30       | 79,85  | 67,93   |
| 1962 | 5     | 16  | 4,08  | 135,0005  | 1962,37032915 | 105    | 63       | -21      | 66,41  | 108,43  |
| 1962 | 5     | 16  | 6,08  | 135,0007  | 1962,37055746 | 100    | 68       | -24      | 72,11  | 109,44  |

Данные из печатных журналов наблюдений вручную переносились в цифровой формат.

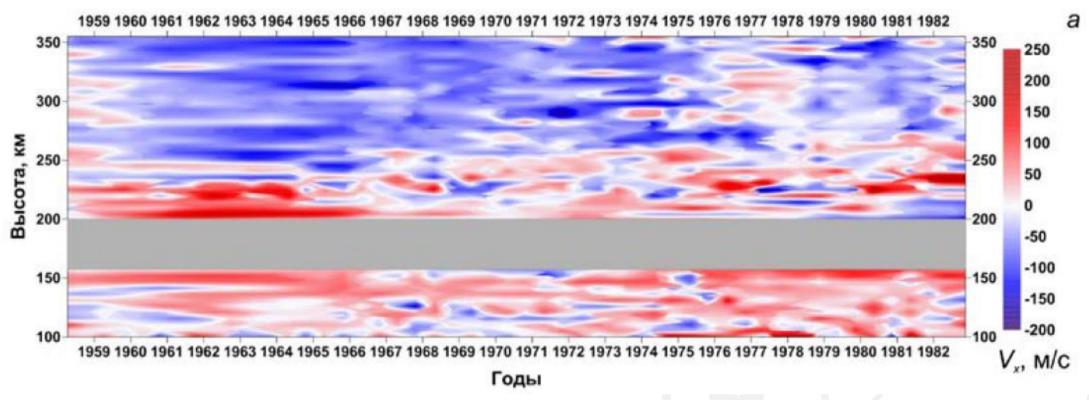
Из всего объема данных были созданы 2 базы данных БД Зуй и БД Бадары (csv формат с единой формой записей), которые размещены во внутренней локальной сети ИСЗФ.





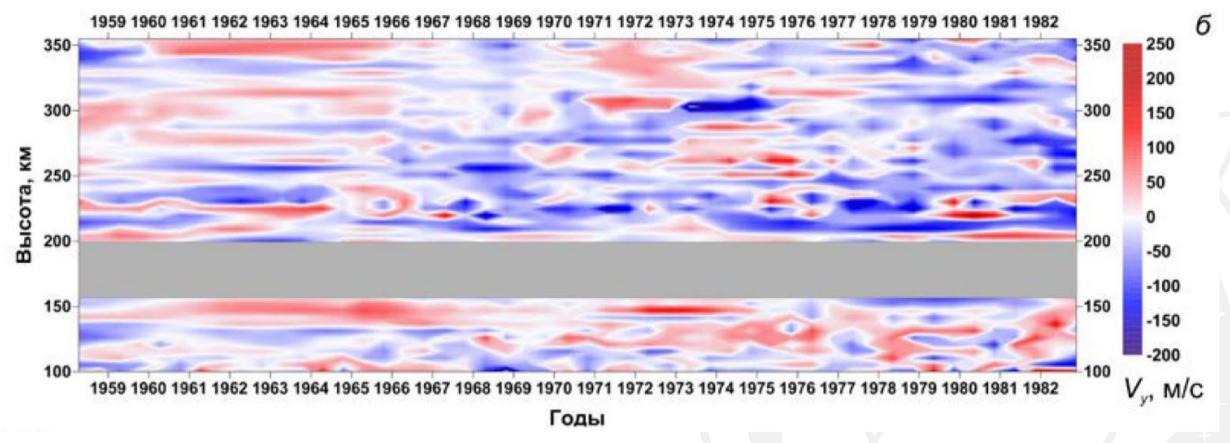

Также была создана визуальная оболочка для удобства просмотра и сравнения скоростей на 2х станциях (для одновременных экспериментов)

«Современные проблемы дистанционного зондирования Земли из космоса» 2024


сохранить JPEG

Анализируемый временной интервал охватывает три неполных цикла солнечной активности: с максимума 19 цикла (1958 г.), полный 20-й цикл и до периода спада активности 21-го цикла. До сентября 1973 г. регистрация велась на кинопленку, позже проводилась цифровая запись на магнитофон. Полученные на установке в д. Зуй экспериментальные данные были опубликованы в 1968—1984 гг. в 18-ти выпусках сборника «Результаты ионосферных наблюдений».

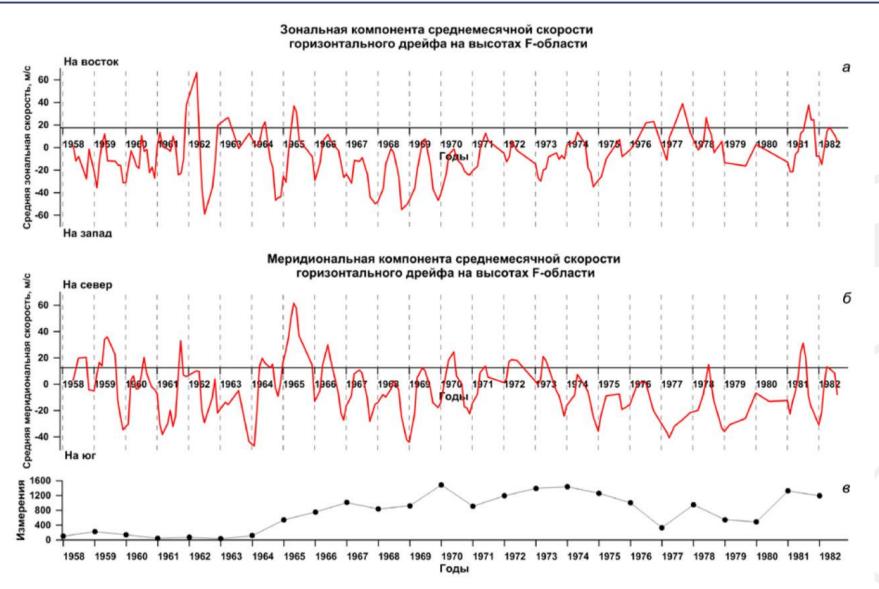
Для статистического анализа использовался весь массив (29585 измерений) архивных экспериментальных данных. Регулярные систематические наблюдения начинаются с 1965г.




#### Зональная компонента скорости Vx

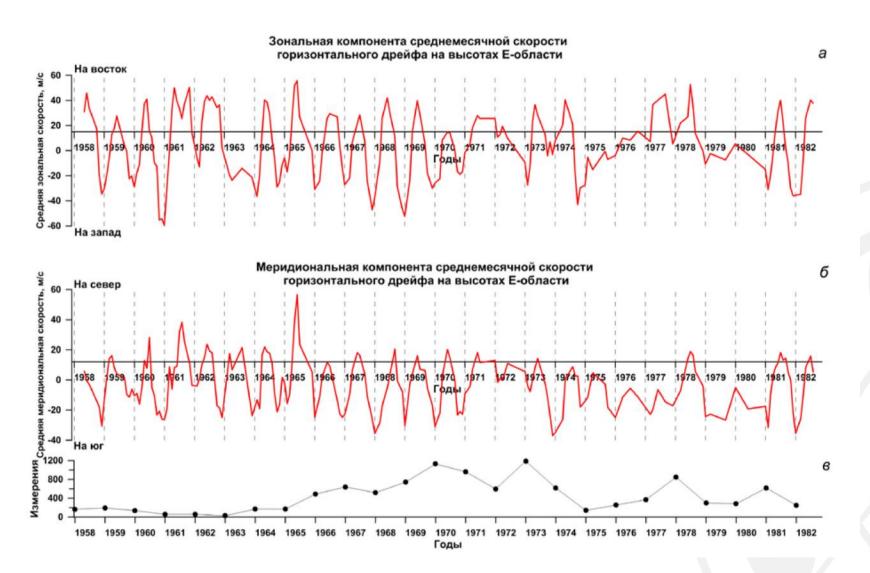


Положительные значения скорости соответствуют направлению на Восток (Западный ветер)


### Меридиональная компонента скорости Vx



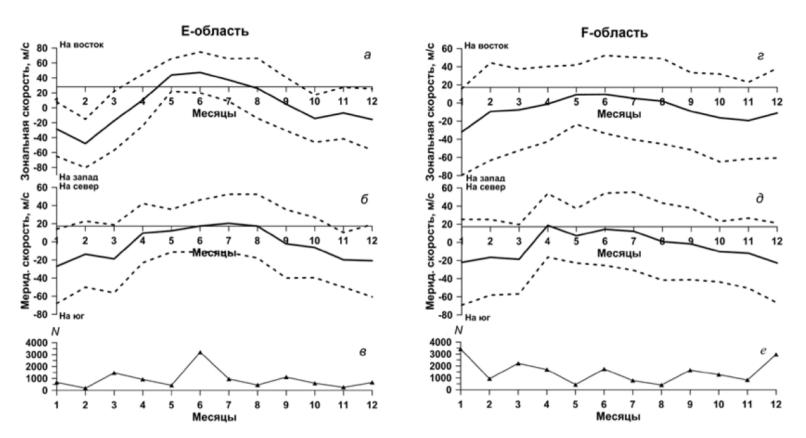
Положительные значения скорости соответствуют направлению на Восток (Западный ветер)


Движение в зональном направлении более регулярно, чем в меридиональном. Преобладающее направление уверенно выделяется для верхней ионосферы (высоты более 230 км, F слой) — это направление на запад . Для нижней ионосферы наблюдается большая изменчивость направлений. Отметим, что для нижней ионосферы скорость дрейфа ионосферы совпадает с направлением нейтрального Ветра, а для верхней (слоя F) это может не выполняться. Поэтом анализ движений верхней и нижней ионосферы необходимо проводить отдельно.

Массивы экспериментальных данных составляли **11031** и **18554** измерения соответственно для Е- и F- областей.



# **Верхняя ионосфера** Окно текущего среднего 90сут.


Горизонтальный дрейф неоднородностей плазмы на высотах верхней ионосферы в целом направлен на юго-запад с преобладанием зонального направления. Направление не имеет сезонной зависимости, сохраняется в течение всего года. Зимние значения полного вектора скорости больше летних



### Нижняя ионосфера

Окно текущего среднего 90сут.

В Е-области зимой преобладает движение неоднородностей ионизации на юго-запад, Летом — на Восток. Зимние значения полного вектора скорости больше летних



В ходе работы были рассчитаны ежемесячные средние многолетние значения (нормы) компонент скоростей и среднеквадратические отклонения отдельных измерений от средних. Таким образом, была получена многолетняя средняя годовая вариация зональной и меридиональной компонент скорости горизонтального дрейфа на высотах Е- и Fобластей

Puc. 7. Многолетняя средняя годовая вариация зональной  $(a, \varepsilon)$  и меридиональной  $(b, \delta)$  компонент скорости горизонтального дрейфа (сплошные линии) и среднеквадратические отклонения (штриховые линии), а также общее число измерений для месяцев года на высотах E- и F-областей  $(a, \varepsilon)$ 

#### Заключение

Статистический анализ всего огромного массива архивной экспериментальной информации о динамическом режиме ионосферы 1958–1982 гг. ранее не выполнялся. Научный анализ проводился для отдельных сезонов или временных интервалов, корректируемых графиками совместных измерений в рамках всемирных научных программ (МГГ, МГС, МГСС), или для временных периодов проведения научных экспериментов по верификации используемого радиофизического метода D1. Следует понимать, что в те годы весь процесс обработки экспериментальных данных и графического представления результатов научного анализа выполнялся вручную, был трудоемким и требовал много времени. Выполнить статистический анализ массива, содержащего почти 30000 измерений, было практически невозможно. Поэтому результаты ретроспективного статистического анализа являются новыми и чрезвычайно актуальными в настоящее время. Статистические оценки представляют научный интерес, поскольку дают информацию о долготно-временных (климатических) нормах параметров движения ионизации на высотах Е- и F-областей над регионом юга Восточной Сибири. Результаты представленного статистического анализа репрезентативны и достоверны, поскольку обрабатывался ряд наблюдений большого объема; анализируемые данные получены единым методом и обработаны по единой методике.

Спасибо за внимание

